# The Science of Skill Learning: Coaching Applications

Tom Parry Ph.D. Northeastern Illinois University









### Youth Sports

- Over 26 million youth involved in organized sport
- Johnston et al. (2007) found over 35% of high school males and females are involved in varsity sports

- Usually involves 2-5 practices per week plus games
- Provides ample opportunity for skill learning
- Coach influence on skill development is very high

# Coaching Education

Several national organizations exist for coaches

- National Association for Sport and Physical Education (NASPE)
- National Federation of State High School Associations (NFHS)
- American Sport Education Program (ASEP)

Almost every sport has a national organization with coaching education programs

**E.g.** Soccer (NSCAA, US Youth Soccer, AYSO)

# Coaching Requirements

- Child/Adolescent sports
  - Usually volunteer and often parents of participants
  - Limited certification/education requirements
- Age Group (Travel and/or Competitive)
  - **↗** Playing experience ⊗, Sport Specific License, Coaching Experience
- High School
  - Most require coaches to be ASEP certified
    - Paper/Pencil test, very basic, often used as liability coverage

Hiring past "good" players is an inappropriate practice, yet incredibly prevalent in coaching at all levels

### Sources of Education

- "I always remembered what my coach used to make us do...."
  - ◄ If you were 15, now 35.....that is 20 year old knowledge!!!
    - Has anything changed in 20 years?
  - What if your coach used the same educational methodology?
  - Coaching licenses are important but often limited to basic pedagogy (e.g. be positive, sport specific activities)
  - The Lemyre et al. (2007) found professional development is limited
  - Understanding the science of skill learning is essential for enhanced performance and learning

# Motor Skill Learning

#### **Definition**

Set of processes associated with practice and/or experience leading to a relatively permanent changes in the capability for movement

- One of the 4 Pillars of Sport & Exercise Science
  - Biomechanics, Exercise Physiology, Motor Behavior, Sport Psychology
- How people learn and how practitioners can facilitate learning



# Motor Skill Learning Concepts

# Speed/Accuracy Trade Off

Which Task is the easiest, Task 1 or Task 2?







MT = 
$$Log2(2A/W)$$
  
Task 1  
 $(2*20/4) = 10$   
Task 2  
 $(2*10/2) = 10$ 

SAME DIFFICULTY

### Speed/Accuracy Trade Off

- Fitts (1954) identified a relationship between task difficulty and movement time
  - If accuracy demands are increased, speed must decrease

- Numerous applications to equipment and activity design
- Belkin & Eliot (1997) emphasizing accuracy during skill acquisition impedes the development of an efficient movement pattern







### Practice Schedule

#### Contextual Interference

Shea & Morgan (1979) found random practice (ABCBCA) was more beneficial than blocked practice (AABBCC)

- Goode & Magill (1986), Hall, Domingues & Cavazos (1994), Memmert (2006) found random learning benefit
  - badminton serves, baseball hits for skilled players, basketball free throw
- Create activities that involve switching between tasks or practicing different versions of the same task during practice

### Practice Schedule





E X A M

P L E S





### Feedback

- Salmoni, Schmidt & Walter (1985) identified 4 functions of feedback (KR)
  - Dependency (performers rely on external feedback)
- Relative frequency of KR has shown learning benefits for reduced % of feedback during learning

- Talk less frequently
- Lead to correct response
- Promote Self Evaluation

### "There's no donuts in baseball!"

- Weighted bat warm up is thought to increase swing speed "at bat"
- DeRenne et al. (1992) investigated the effects of weighted bat warm up on swing velocity with a regulation bat
  - Found warm up with donut resulted in a slower swing velocity with regulation bat



- Baseball is an interceptive timing skill
  - Best practice is pitch timing "on deck"
- Weighted bat warm up does not increase swing speed "at bat" – LET'S STOP DOING IT



### Constraints-Led Approach

- Coaches <u>have to</u> coach (instruct) during practice to enhance learning
  - Or do they?
- Hands off practitioner
  - Instructor is facilitator, enhances learning through advanced planning and activity design
  - Conditions and modifications encourage learners to problem solve to meet task requirements (Coker, 2009)
- Nakayama (2008) found when activity area was manipulated performance changed as a function of activity dimensions

- 3 Stage Model of Activity Design
  - 1. Concept (E.g. Possession progression)
  - Cues (E.g. Teaching Cues and Emphasis)
  - 3. Design (E.g. Dimensions, # of Players, Conditions and Modifications)

## Constraints-Led Approach & TGfU

- The Constraints-Led Approach has significant ties with the TGfU curriculum model (Thorpe, Bunker & Almond, 1986)
  - **♂** Condition = e.g. 5 passes before trying to score
  - Modification = e.g. dimensions



## Suggestions

- Obtain appropriate resources related to your field
  - Textbooks, journal articles, workshops, AAHPERD presentations!
- Be a discerning consumer
  - Just because your coach did it, doesn't mean it is "best practice"
- Be reflective on your own practice
  - If practice doesn't go well, maybe your activities or instruction had something to do with it
- Be a student of your sport
  - Your sport is skill learning, it just happens to be in a sport!



### Questions?

t-parry1@neiu.edu

### References

- Fitts, P. M. (1954). The Information Capacity of the Human Motor System in Controlling the Amplitude of Movement, *Journal of Experimental Psychology*, 47, 381-391
- Shea, J. B., & Morgan, R. L. (1979). Contextual Interference Effects on the Acquisition, Retention, and Transfer of a Motor Skill. Journal of Experimental Psychology: Human Learning and Memory, 5(2), 179-187.
- Belkin, D. S., & Eliot, J. F. (1997). Motor Skill Acquisition and the Speed-Accuracy Trade-Off in a Field Based Task. *Journal of Sport Behavior*, 20, 16-28.
- Goode, S., & Magill, R. A. (1986). Contextual Interference Effects in Learning Three Badminton Serves. *Research Quarterly for Exercise and Sport*, *57*(4), 308-314.
- Memmert, D. (2006). Long-Term Effects of Type of Practice on the Learning and Transfer of a Complex Motor Skill. *Perceptual and Motor Skills*, 103(3), 912-916.
- Johnston, L. D., Delva, J., & O'Malley, P. M. (2007). Sports Participation and Physical Education in American Secondary Schools. American journal of preventive medicine, 33(4), 195-208
- Hall, K. G., Domingues, D. A., & Cavazos, R. (1994). Contextual Interference Effects with Skilled Baseball Players. *Perceptual and Motor Skills*, 78(3), 835-841.
- Salmoni, A. W., Schmidt, R. A., & Walter, C. B. (1984). Knowledge of Results and Motor Learning: A Review and Critical Reappraisal. *Psychological bulletin*, *95*(3), 355-386.
- DeRenne, C., Ho, K. W., Hetzler, R. K., & Chai, D. X. (1992). Effects of Warm Up with Various Weighted Implements on Baseball Bat Swing Velocity. *The Journal of Strength & Conditioning Research*, 6(4), 214-218.
- Coker, C. A. (2004). *Motor Learning and Control for Practitioners*. Holcomb-Hathaway Publishers, Scottsdale, AZ.
- Thorpe, R., Bunker, D., & Almond, L. (1986). *Rethinking Games Teaching*. Department of Physical Education and Sports Science, University of Technology, Loughbrough, UK.