

#### **Presentation Outline**

- Data Exploration
- Basic Assumptions of Commonly Used Statistics
- Formulating Decisions After Exploration and Review of Assumptions





# Sources of Error – Self-Report

- Attitudes/Personality Inventories
  - Social desirability bias
  - Misunderstand the question
  - Not remembering events accurately
  - Accidentally skipping questions
- Self-report measures vs direct measures
  Height and weight



#### Sources of Error - Physiologically

- Calibration of equipment
- Intra-rater reliability
- Inter-rater reliability
- Artifacts interference of the signal

#### **Data Exploration**

#### • Errors:

- What types of errors can only be detected during data collection?
  - What quality control measures help to prevent errors during data collection?
- What types of errors (e.g. unbelievable scores, inconsistent responses) can be detected and removed by examining the data set?

#### Data Exploration can help to...

- Describe your sample and "get acquainted with your data"
- Identify extreme or impossible scores, response inconsistencies, etc
- Identify possible violations of assumptions

#### Data Screening

- Purposes:
  - Accuracy of data collected
    Garbage in, Garbage out
  - Assess effect of and ways to deal with incomplete data
    - Equipment failure, not responding to items, not completing trials
  - Outliers or extreme values
  - Adequacy of fit between the data and assumptions of the specific procedures



- Data set to show data screening procedures
- Effects of social stress on blood pressure (Mooney, 1990)

 198
 189
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199
 199</th

 1
 both
 Normal
 0
 Normal
 Normal
 0
 Normal
 Normal
 0
 Normal
 No

.....

12

M 📥 🗐 👪 🏢



| _                      |         |       |      |              | Statistics                    |        |        |       |        |        |       |
|------------------------|---------|-------|------|--------------|-------------------------------|--------|--------|-------|--------|--------|-------|
|                        |         | class | sex  | cigs per day | hours<br>exercise per<br>week | height | weight | age   | sys1   | dia1   | hrl   |
| ι.                     | Valid   | 65    | 65   | 64           | -65                           | 65     | 65     | 54    | .64    | 64     | 65    |
|                        | Missing | 0     | 0    | 1            | 0                             | 0      | 0      | 1     | 1      | 1      |       |
| lean                   |         | 1.89  | 1.62 | 1.23         | 1.93                          | 66.91  | 145.74 | 19.50 | 125.25 | 74.14  | 74.45 |
| dedian .               |         | 2.00  | 2.00 | 1.00         | 2.00                          | 67.00  | 148.00 | 19.00 | 121.50 | 74.00  | 75.00 |
| eode .                 |         | 1     | 2    | 1            | 1*                            | 62     | 1154   | 19    | 114    | 69*    | 71    |
| 3td. Deviation         |         | 1.091 | .550 | .684         | .894                          | 4.072  | 27.428 | 1.285 | 19.869 | 11.717 | 8.635 |
| kewness                |         | 1.112 | .103 | 3.349        | 1.022                         | .397   | .609   | .834  | .945   | .899   | 02    |
| Std. Error of Skewness |         | 297   | .297 | .299         | .297                          | .297   | 297    | .299  | .299   | .299   | .29   |
| Gurtosis               |         | .510  | 899  | 11.019       | .478                          | 533    | 060    | .286  | .687   | .590   | 49    |
| itd. Error of Kurtosis |         | .586  | .585 | .590         | .586                          | .585   | .585   | .590  | .590   | .590   | .58   |
| ange                   |         | 4     | 2    | 3            | 3                             | 18     | 127    | 5     | 94     | 52     | 3     |
| inim                   | um      | 1     | 1    | 1            | 1                             | 60     | 103    | 18    | 93     | 51     | 5     |
|                        | ST22-01 | 5     | 3    | 4            | 4                             | 78     | 230    | 23    | 187    | 103    | 9     |

#### Handling Missing data

- Deleting cases that have caused problems
  Not a bad alternative if only a few cases have missing values
- Missing values may be concentrated to a few variables
  Entire variable may be dropped depending on its importance
- Estimate missing values
  - Prior knowledge for a replacement value
  - Calculation of the means using available data for the variables with missing values
  - Regression approach several IVs are used to develop an equation that can be used to predict the value of the DV

... Regardless - repeat analysis with missing cases

# Listwise versus Pairwise Deletion

- With SPSS listwise or pairwise deletion is available to remove missing data points
  - Listwise data for the participant is ignored for all calculations can result in a smaller N; but calculations are made on the same set of participants
  - **Pairwise** analyses will be made using data from all participants who had non-missing values for the particular pair of variables – preserves the maximum possible N for the computation, the N will vary across computations



|                        |       |      |              | Statistics                    |        |        |       |        |        |       |
|------------------------|-------|------|--------------|-------------------------------|--------|--------|-------|--------|--------|-------|
|                        | class | sex  | cigs per day | hours<br>exercise per<br>week | height | weight | age   | sys1   | dia1   | hri   |
| N Valid                | 65    | 65   | 64           | 65                            | 65     | 65     | 64    | 64     | 64     | 65    |
| Missing                | 0     | 0    | 1            | 0                             | 0      | 0      | 1     | 1      | 1      | 1     |
| Mean                   | 1.89  | 1.62 | 1.23         | 1.93                          | 66.91  | 145.74 | 19.50 | 125.25 | 74.14  | 74.45 |
| Median                 | 2.00  | 2.00 | 1.00         | 2.00                          | 67.00  | 148.00 | 19.00 | 121.50 | 74.00  | 75.00 |
| Mode                   | 1     | 2    | 1            | 1*                            | 62     | 115*   | 19    | 114    | 69*    | 70    |
| Std. Deviation         | 1.091 | .550 | .684         | .894                          | 4.072  | 27.428 | 1.285 | 19.869 | 11.717 | 8.635 |
| Skewness               | 1.112 | .103 | 3.349        | 1.022                         | .397   | .609   | .834  | .945   | .899   | 023   |
| Btd. Error of Skewness | 297   | .297 | 299          | .297                          | .297   | 297    | .299  | .299   | .299   | .297  |
| Kurtosis               | .510  | 899  | 11.019       | .478                          | 533    | 060    | .286  | .687   | .590   | 495   |
| Std. Error of Kurtosis | .586  | 585  | .590         | .586                          | .585   | .585   | .590  | .590   | .590   | .586  |
| Range                  | 4     | 2    | 3            | 3                             | 18     | 127    | 5     | 94     | 52     | 37    |
| Minimum                | 1     | 1    | 5            | 1                             | 60     | 103    | 18    | 93     | 51     | 56    |
| Maximum                | 5     | 3    | 4            | 4                             | 78     | 230    | 23    | 187    | 103    | 93    |

#### Outliers

- Unusual or extreme scores
  - Data entry errors
  - Person is not a member of the population for which sample is intended
  - Person is simply different from remainder of the sample

































## Data Screening for Two Categorical Variables

When you have two categorical variables, what graphs or statistics do you need to obtain to characterize your sample and help you plan appropriate analyses?



|        |        |                 |            | SMOKE        |              |        |
|--------|--------|-----------------|------------|--------------|--------------|--------|
|        |        |                 | non smoker | light smoker | heavy smoker | Total  |
| GENDER | male   | Count           | 22         | 4            | 1            | 2      |
|        |        | Expected Count  | 21.8       | 3.9          | 1.3          | 27.    |
|        |        | % within GENDER | 81.5%      | 14.8%        | 3.7%         | 100.09 |
|        | female | Count           | 28         | 5            | 2            | 3      |
|        |        | Expected Count  | 28.2       | 5.1          | 1.7          | 35.    |
|        |        | % within GENDER | 80.0%      | 14.3%        | 5.7%         | 100.09 |
| Total  |        | Count           | 50         | 9            | 3            | 6      |
|        |        | Expected Count  | 50.0       | 9.0          | 3.0          | 62.    |
|        |        | % within GENDER | 80.6%      | 14.5%        | 4.8%         | 100.09 |

|        |        |                                                               | smoke2                               |                                     |        |
|--------|--------|---------------------------------------------------------------|--------------------------------------|-------------------------------------|--------|
|        |        |                                                               | 1                                    | 2                                   | Total  |
| GENDER | male   | Count                                                         | 22                                   | 5                                   | 2      |
|        |        | Expected Count                                                | 21.8                                 | 5.2                                 | 27.0   |
|        |        | % within GENDER                                               | 81.5%                                | 18.5%                               | 100.0% |
|        | female | Count                                                         | 28                                   | 7                                   | 3      |
|        |        | Expected Count                                                | 28.2                                 | 6.8                                 | 35.0   |
|        |        | % within GENDER                                               | 80.0%                                | 20.0%                               | 100.0% |
| Total  |        | Count                                                         | 50                                   | 12                                  | 6      |
|        |        | Expected Count                                                | 50.0                                 | 12.0                                | 62.0   |
|        |        | % within GENDER                                               | 80.6%                                | 19.4%                               | 100.0% |
| tal    |        | % within GENDER<br>Count<br>Expected Count<br>% within GENDER | 28.2<br>80.0%<br>50<br>50.0<br>80.6% | 6.8<br>20.0%<br>12<br>12.0<br>19.4% | 100    |

#### Data Transformations

- Mathematical procedures that can be used to modify variables that violate the statistical assumptions of normality, linearity, and homoscedasticity
- What extent of the basic assumption has been violated?
  - Robustness: relative insensitivity of a statistical test to violations of the underlying inferential statistics
- Use data transformations through the compute procedure in SPSS



- Transformation can also provide data interpretation problems
- Difficulty interpreting transformed data vs raw data
- Skewed distributions: taking the log or square root of scores can help
- Nonlinear transformations base 10 log of X







# Basic Assumptions for t-Test for Dependent Groups

#### Assumptions:

- 1.Paired differences are random sample from a normal population
- 2. Equal variances assumption is unnecessary, since you will be working with one group

#### Basic Assumptions for One Way ANOVA

#### Assumptions:

- 1. Samples are randomly drawn from a normally distributed population
- 2. Variances of samples are approximately equal

#### Basic Assumptions for Repeated Measures ANOVA Assumptions:

- 1. Samples are randomly selected from a normal population
- 2. Variances for each measurement are approximately equal

#### Basic Assumptions for Pearson Product-Moment Correlation Coefficient

- 1. Interval/Ratio data of both variables
- 2. Normal distribution
  - Homogeneity of Variance variation in scores for both X and Y scores must be similar, this is known as <u>heteroscedasticity</u>. Assumed unless either distribution is skewed
- 3. Linear Relationship association between X and Y is linear. Relationship has to form a straight line. <u>Curvilinear</u> <u>relationships</u> (in which an increase in X is accompanied by an increase in Y up to a point, and is then accompanied by a decrease in Y) should not be assessed by Pearson r

# Data Exploration: What is the appropriate Data Analysis?



# SPSS Commands for Data Exploration and Analysis

#### Explore Missing Data:

#### <u>Analyze</u>

**Descriptive Statistics** 

#### <u>Frequencies</u>

Move all variables that you want to explore into variable(s) box

## **Statistics**

You can select from different descriptive data, such as mean, standard deviation, skewness, kurtosis

#### <u>Charts</u>

You can select graphs, such as a histogram to view your data

## <u>OK</u>

## **Explore Group Differences:**

## <u>Analyze</u>

Compare Means

Move DV to Dependent List

Move IV to Independent List

**Options** 

Move over: mean, sd, n, kurtosis, skewness & SE of kurtosis and skewness

# <u>OK</u>

## **Explore Univariate Normality:**

## <u>Analyze</u>

**Descriptive Statistics** 

## **Explore**

Move IV to Factor List

Move DV to Dependent List

# <u>Statistics</u>

Make sure descriptive and outliers are checked

## <u>Plots</u>

Check histograms

<u>Continue</u>

# <u>OK</u>

#### **Remove Impossible/Extreme Scores**

<u>Data</u>

Select Cases

Use a logical "if" statement to assist in excluding data IF  $\rightarrow$  sex  $\cong$  3

<u>Continue</u>

Select – If condition is satisfied

Output – Select filter out unselected cases

<u>OK</u>

## **INDEPENDENT GROUPS t-TEST ANALYSIS**

## <u>Analyze</u>

<u>Compare Means</u> <u>Independent Sample T Test</u>

> Move DV into Test Variable box Move IV into Grouping Variable box

DEFINE GROUPS In Group 1 box enter in 1 (or code utilized) In Group 2 box enter in 2 (or code utilized)

<u>Continue</u> OK

# **REPEATED MEASURES t-RATIO ANALYSIS**

<u>Analyze</u>

<u>Compare Means</u> <u>Paired-Samples t Test</u> Highlight both conditions and move to Paired Variable Box <u>OK</u>

#### SPSS: ONE-WAY INDEPENDENT GROUPS ANALYSIS OF VARIANCE

#### <u>Analyze</u>

Compare Means

<u>One-Way ANOVA</u>

Your DV  $\rightarrow$  Dependent Variable Box

Your IV  $\rightarrow$  Factor Box

#### **Options**

X Descriptives X Homogeneity of Variance X Means Plot

#### <u>Continue</u>

## <u>OK</u>

## SPSS: REPEATED MEASURES ANALYSIS OF VARIANCE

#### <u>Analyze</u>

#### General Linear Model

#### **Repeated Measures**

Change Within-Subject Factor name (Factor 1) to the name of your repeated variable (i.e. Treatment)

Number of Levels - enter appropriate number of levels

#### <u>ADD</u>

#### <u>Define</u>

| Highlight and Move TX1> (1) | (Be careful here   |
|-----------------------------|--------------------|
| Highlight and Move TX2> (2) | to put these names |
| Highlight and Move TX3> (3) | in logical order)  |

#### <u>Plots</u>

Highlight repeated measures factor name and move it over to Horizontal Axis

## <u>ADD</u>

#### **Continue**

## **Options**

Highlight repeated measures factor name and move it to the Display Means Box on Right

## <u>Display</u>

X Descriptives X Estimates of Effect Size X Parameter Estimates

# <u>Continue</u>

# <u>OK</u>