

Factors Influencing Continued Bicycle Riding in Youth With Disabilities

Leah Ketcheson, M.A., CAPE Janet Hauck, M.A., CAPE Dale A. Ulrich, PhD

> University of Michigan School of Kinesiology Ann Arbor, MI

Center for Physical Activity & Health in Pediatric Disabilities

- Physical activity to combat obesity (Goran et al. 1999)
- Physical inactivity as a factor contributing to obesity in intellectual disability (Reilly et al. 1993; USDHHS 1996, 2000, 2002; Healthy People 2010, 2000)
- Youth with DS and ASD display a very stable pattern of physical inactivity (Ulrich et al. 2011)
- Individuals with disabilities are less likely to participate in physical activity than the general population (Draheim et al. 2002)

Physical Activity (PA)

Kinesiology

- Lag behind their age-matched peers in motor milestones (Rubin et al. 1998)
- Small repertoire of activities (Ulrich et al. 2011)
 - For example, less than 10% of youth with DS can ride a two-wheeled bike with about 20% in ASD
- Recent recommendations to improve health of special populations has been considered a priority (Cooper et al. 1999; USDHHS 2002)

Lack of intervention research to increase physical activity (Ulrich et al. 2011)

Down syndrome (DS)

- Physical activity considerations of children
 with DS
 - Hypotonia (Shields et al. 2010)
 - Ligamentous laxity (Tredwell et al. 1990)
 - Perceptual difficulties (Virgi-Babul et al. 2006)
 - Poor balance (Ulrich et al. 2011)
 - Extremely social
 - Take fewer physical risks (Lloyd et al. 2007)
 - Sedentary behavior (Whitt-Glover et al. 2006; Linn et al. 2000)

Autism Spectrum Disorder (ASD)

- Physical activity considerations of children with ASD
 - Motor skill development behind peers (MacDonald et al. 2011; Staples & Reid 2010)
 - Motor coordination deficits (Fournier et al. 2010)
 - Physical activity decreases with age (Pan & Frey 2006)
 - Little participation in socially demanding physical activity (Pan & Frey 2006)
 - Need individualized instruction (Staples et al. 2006)

Why Bicycle Riding?

- Societal norm
- Age appropriate
- Lifelong benefits
 - Social benefits (Menear, 2007)
 - Health enhancing (Ulrich et al. 2011)
 - Independent travel
- Psychological health (Gotham et al., in press)

• **Specific Aim 1:** Examined the bicycle riding status of youth with DS and ASD who participated in a one week bicycle training intervention to determine those who retained this skill overtime

- **Specific Aim 2:** To understand the factors predicting continued bicycle riding three months following a bicycle training intervention
 - Logistic regression

- Participants
 - -N = 40 ASD, N = 16 DS
 - Aged 9-18 years
 - Data collected
 - Pre and Post

Success criteria

- 100 feet independent riding
- Self-braking & starting

– Pre/post-camp measures

- Height, weight, & BMI
- One-leg standing balance
- Leg strength (knee flexion & extension)
- Skinfold (mid-tricep & mid-calf)
- Waist circumference
- Physical activity

Descriptive Data

Sample	ASD	DS
Characteristics	$Mean \pm SD$	$Mean \pm SD$
Sample Size	n = 40	n = 16
Age (years)	12.31 ± 2.36	12.58 ± 2.41
Gender (% females)	30%	56.3%
Height (cm)	148.85 ± 36.82	136.06 ± 24.77
Weight (kg)	50.08 ± 20.10	42.37 ± 14.93
BMI (kg/m ²)	21.39 ± 5.40	21.99 ± 4.62
BMI Percentile	66.46 ± 29.19	78.14 ± 16.99
SRS	2.61 ± 0.59	2.55 ± 0.64
Light PA (min)	213.57 ± 58.65	215.35 ± 59.35
Leg Extension (kg)	16.47 ± 5.79	16.46 ± 5.54

3-Month Follow Up	Maintained Skill	Lost Skill	Percent (%) Skill Maintained
ASD (n=40)	30	10	75%
DS (n = 16)	11	5	69%
TOTAL	41	15	73%

	Predicted Rider	Predicted Non- Rider	Percent Correct
Observed Rider	24	4	85.7%
Observed Non- Rider	4	11	73.3%
Overall Percentage			81.4%

Hosmer & Lemeshow = 0.496 Sensitivity = 85.7% Specificity = 73.3%

Factors Predicting Bicycle Skills	OR	95% CI	Ρ	% Change in Odds
Light PA	1.014	.999 – 1.029	.071	1.4
BMI %ile	.946	.902993	.023*	-5.4
SRS	.183	.036944	.042*	-81.7
Leg Extension	1.283	1.008 – 1.634	.043*	28.3

*<0.05, OR=Odds Ratio, CI=Confidence Interval, P=Significance Level, PA=Physical Activity, BMI=Body Mass Index, SRS=Social responsiveness scale

Results – Group Differences

Kinesiology

	ASD (n = 40)				DS (n = 16)			
3-Month Follow Up	Maintained Skill (n = 30)	Lost Skill (n = 10)	Ρ	ES	Maintained Skills (n= 11)	Lost Skill (n= 5)	Ρ	ES
BMI %ile	65.22 ± 31.61	70.17 ± 21.30	.017*	0.18	73.29 ± 18.22	88.82 ± 6.70	.172	1.13
SRS	2.54 ± 0.64	2.80 ± 0.42	.020*	0.48	1.3 ± 0.48	1.80 ± 0.45	.420	0.63
Light PA (min)	221.39 ± 59.38	193.27 ± 54.31	.529	0.49	223.68 ± 67.08	193.57 ± 38.81	.099	1.12
Leg Extension (kg)	17.15 ± 5.84	14.78 ± 5.57	.988	0.42	16.23 ± 4.05	13.61 ± 3.29	.524	1.23

*<0.05, ASD=Autism Spectrum Disorder, DS=Down syndrome, P=Significance Level, ES=Effect Size, BMI=Body Mass Index, SRS=Social responsiveness scale, PA=Physical Activity

Discussion

- Variables in model can be modified
- Indoor movement opportunities

Limitations

Missing data - sample size

Future Directions

Test model by disability group

Conclusions

 Determining which factors predict continued riding status are important as we can address these variables before the intervention begins in order to increase the odds of continued riding status

Acknowledgements

Kinesiology

Funding

- Steelecase Foundation
- Lyle foundation
- National Institute on Disability Research and Rehabilitation
- U.S. Office of Special Education Programs (OSEP) Leadership Training Grant (H324C040016)

Contributors

Members of the Center for Physical Activity & Health
 in Pediatric Disabilities

